
1

Coursework summary

• ‘Using Microsoft Visual Studio’ document
• Game framework

– Wraps up SDL (Simple DirectMedia Layer)
• So you don’t need to learn SDL functions

– Hides re-draw issues – to run relatively quickly
• So you don’t need to spend hours debugging them

– Very simple
• You should be able to understand the code already

– Avoids need for maths
• Maths ability is not a pre-requisite for the course

2

Frameworks
• C++ Frameworks often use inheritance
• Provide a generic framework to work within
• Allow specific functionality to be changed or

added
• So does Java, e.g. with Java’s Applet :

– Override different functions to change the
behaviour

• Supplies methods for this purpose, e.g.:
init() , paint() , start() , stop() , destroy()

– Provide utility functions, called to do things, e.g.:
update(), resize() , getParameter() , play()

3

C++ Coursework Framework

• Provides base classes which you sub-
class to implement your own class

BaseEngine
(.h and .cpp)

DisplayableObject
(.h and .cpp)

BouncingBallMain
(.h and .cpp)

BouncingBall
(.h and .cpp)

BaseEngine keeps an
array of DisplayableObjects

Rather than ‘custom’ functions, you use virtual functions to alter the behaviour.

4

How do you use the framework?

• Game framework links everything together
– You just ‘tweak’ the behaviour to implement a

game

• Override the functions that you want to
change the behaviour of

• Base classes also provide various utility
functions that your overrides can call to do
work

5

Game initialisation

Initialise SDL

Create window

Create framework objects

Call GameInit()

You can override:

GameInit()
Do your own initialisation

6

Game main loop
Update key presses

KeyUp()
KeyDown()

Call GameAction()

Call GameRender()
DrawScreen()

or
DrawChangingObjects()

GetUpdateRectanglesFor-
ChangingObjects()

You can override:

KeyUp(), KeyDown() :
Handle keys pressed

GameAction()
Move things

SetupBackgroundBuffer()

DrawScreen()

DrawChangingObjects()

GetUpdateRectangles-
ForChangingObjects

7

Drawing

Drawing the whole window
Drawing only the moving objects

Useful functions

8

Drawing to the whole window

GameInit() calls SetupBackgroundBuffer()
• You draw to the background buffer within

SetupBackgroundBuffer()
• You call SetupBackgroundBuffer() after any big change

(e.g. loading a new level), to update the appearance

GameRender() calls DrawScreen()

• Within DrawScreen() you should:

– Call CopyAllBackgroundBuffer()
– Optionally, draw any strings on top
– And ask moving objects to draw themselves

GameRender() calls SDL_UpdateRect()
– To update entire screen

Actual display

Memory for your
window

Background Buffer

9

Re-drawing moving objects
GameRender() calls DrawChangingObjects()
• Call UndrawChangingObjects()

Draw the background over old draw position
• Call DrawChangingObjects()

Calls Draw() on each object, which draws it and calls
StoreLastScreenPositionAndUpdateRect() to store the
position

Call DrawStrings()

Draw any information strings

GameRender() asks for areas which changed
• Calls GetUpdateRectanglesForChangingObjects()

which calls GetRedrawRect() on each displayable object
which uses values stored by
StoreLastScreenPositionAndUpdateRect()

• GameRender() calls SDL_UpdateRects()

– Update the areas that have changed Actual display

Memory for your
window

Background Buffer

10

Useful Game Engine functions

• Is a key currently pressed?
– IsKeyPressed(int iKeyCode)

• Key-code is an SDL constant

• The screen has changed, redraw needed
– Redraw(true) : redraw the whole screen
– Redraw(false) : redraw just the moving objects
– This is how GameRender() decides what to do
– If you do not call Redraw() nothing will change

• SetScreenPixel(iX, iY, uiColour)

– Draw a pixel on the screen

11

Setting pixel colour

• SetScreenPixel(iX, iY, uiColour)

– Draw a pixel on the screen
– SetScreenPixel(4, 6, 0xFF0000)

Set pixel (4,6) to Red
– SetScreenPixel(134, 23, 0x808080)

Set pixel (134,23) to grey

• SafeSetScreenPixel(iX, iY, uiColour)
– As SetScreenPixel but will verify that (iX,iY) is

within the screen area
– Slower, but writing outside of screen may corrupt your

data or crash your program!

12

Colours

• Colours are specified by Red-Green-Blue
(RGB) value, as in Java

• Colours are specified in 4 bytes of an
unsigned int:
– Highest Byte: Set it to zero
– Next byte: Red element, 0-255
– Next byte: Green element, 0-255
– Lowest byte: Blue element, 0-255

• Hexadecimal no. has 2 digits per byte
– In hex, colour is easy to express: 0xRRGGBB

13

DisplayableObject

14

DisplayableObject

• You will probably just have to implement three
functions:

• Constructor : Initialise data
– Initialise the drawing position variables

• Draw() : Draw the object, store the position at
which it was drawn, calculate redraw region
– You may not need to change this much
– Use SetScreenPixel() to set the pixel colour
– Also use StoreLastScreenPositionAndUpdateRect()

• DoUpdate() : Determine new values for the current
position – i.e. implement the moves, handle player
input, etc

15

DisplayableObject: member data
• Member data:

– m_iCurrentScreenX, m_iCurrentScreenY
• Position on the screen at which to draw

– m_iPreviousScreenX, m_iPreviousScreenY
• Previous position at which it was drawn, to undraw

it later
– m_iStartDrawPosX, m_iStartDrawPosY

• Offset at which to actually draw, relative to top-left
of area

– m_iDrawWidth, m_iDrawHeight
• Size of the thing being drawn, from the start draw

position

16

Movement object

17

BouncingBall1
class BouncingBall1 : public BouncingBall
{
public:

BouncingBall1(BouncingBallMain* pEngine, int iID, int
iDrawType, int iSize, int iColour, char* szLabel,
int iXLabelOffset, int iYLabelOffset, TileManager*
pTileManager);

void SetMovement(
int iStartTime, int iEndTime, int iCurrentTime,
int iStartX, int iStartY, int iEndX, int iEndY);

void DoUpdate(int iCurrentTime);

protected:
/* Movement position calculator */
MovementPosition m_oMovement;

// Pointer to the tile manager
TileManager* m_pTileManager;

};

18

Using the Movement object
• Allows a caller to specify where the object will move from and to and when.
• Setup() sets up a new movement:

– Start position (x and y), End position (x and y), Start time, End time
• Calculate() sets up an internal x and y member according to the time
• GetX() and GetY() retrieve the calculated time
• HasMovementFinished(iCurrentTime) returns true if move completed
• Reverse() reverses the x and y coordinates, and updates times to reverse

the move

void BouncingBall1::SetMovement(int iStartTime, int
iEndTime, int iCurrentTime,
int iStartX, int iStartY, int iEndX, int iEndY)

{
m_oMovement.Setup(iStartX, iStartY, iEndX, iEndY,

iStartTime, iEndTime);
m_oMovement.Calculate(iCurrentTime);
m_iCurrentScreenX = m_oMovement.GetX();
m_iCurrentScreenY = m_oMovement.GetY();

}

19

The tile-based approach

20

Tiles

x=0
y=0

x=1
y=0

x=2
y=0

x=3
y=0

x=4
y=0

x=0
y=1

x=1
y=1

x=2
y=1

x=3
y=1

x=4
y=1

x=0
y=2

x=1
y=2

x=2
y=2

x=3
y=2

x=4
y=2

x=0
y=3

x=1
y=3

x=2
y=3

x=3
y=3

x=4
y=3

Tile based games assume a rectangular map
consisting of a grid of tiles

x coordinate

y
co

or
di

na
te

• Each tile has a type
• Type determines

how it is drawn and
whether it blocks
movement

• e.g.
‘X’ = wall,
‘ ’ = passage
‘-’ = pellet to eat

21

BouncingBallMain.h

class BouncingBallMain :

public BaseEngine

{

protected:

…

// A member object. Object is created when
the BouncingBallMain is created

TileManager m;

22

BouncingBallMain.cpp

• Specify how many tiles wide and high
m.SetSize(20, 20);

• Specify the screen x,y of top left corner
m.SetBaseTilesPositionOnScreen(250, 100);

• Tell it to draw tiles
from x1,y1 (i.e. 2,0) to x2,y2 (i.e. 17.19) in tile array,
to the background of this screen

m.DrawAllTiles(this /*Engine*/ ,

this->GetBackground() /*Or foreground*/ ,

2, 0, 17, 19);

23

BouncingBall – update tiles

• Find the X value of the tile
int iTileX = m_pTileManager->

GetTileXForPositionOnScreen(m_iCurrentScreenX);

• Find the Y value of the tile
int iTileY = m_pTileManager->

GetTileYForPositionOnScreen(m_iCurrentScreenY);

• Get the value of that tile
int iCurrentTile = m_pTileManager->

GetValue(iTileX, iTileY);

• Change the value of that tile and redraw it
m_pTileManager->UpdateTile(GetEngine(), iTileX,

iTileY, iCurrentTile+1);

